Learning Syntactic Patterns Using Boosting and Other Classifier Combination Schemas
نویسندگان
چکیده
This paper presents a method for the syntactic parsing of Hungarian natural language texts using a machine learning approach. This method learns tree patterns with various phrase types described by regular expressions from an annotated corpus. The PGS algorithm, an improved version of the RGLearn method, is developed and applied as a classifier in classifier combination schemas. Experiments show that classifier combinations, especially the Boosting algorithm, can effectively improve the recognition accuracy of the syntactic parser.
منابع مشابه
Learning Sequential Patterns for Lipreading
This paper presents a machine learning approach to Lip Reading and proposes a novel learning technique called sequential pattern boosting that allows us to efficiently search and combine temporal patterns to form strong spatio-temporal classifiers. Attempts at automatic lip reading need to address the demanding challenge that the problem is inherently temporal in nature. It is crucial to model ...
متن کاملA Boosting Approach to Multiview Classification with Cooperation
In many fields, such as bioinformatics or multimedia, data may be described using different sets of features (or views) which carry either global or local information. Some learning tasks make use of these several views in order to improve overall predictive power of classifiers through fusion-based methods. Usually, these approaches rely on a weighted combination of classifiers (or selected de...
متن کاملExperiments with Two New Boosting Algorithms
Boosting is an effective classifier combination method, which can improve classification performance of an unstable learning algorithm. But it dose not make much more improvement of a stable learning algorithm. In this paper, multiple TAN classifiers are combined by a combination method called Boosting-MultiTAN that is compared with the Boosting-BAN classifier which is boosting based on BAN com...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملA comparative study of classifier ensembles for bankruptcy prediction
The aim of bankruptcy prediction in the areas of data mining and machine learning is to develop an effective model which can provide the higher prediction accuracy. In the prior literature, various classification techniques have been developed and studied, in/with which classifier ensembles by combining multiple classifiers approach have shown their outperformance over many single classifiers. ...
متن کامل